804 research outputs found

    Static Analysis of Run-Time Errors in Embedded Real-Time Parallel C Programs

    Get PDF
    We present a static analysis by Abstract Interpretation to check for run-time errors in parallel and multi-threaded C programs. Following our work on Astr\'ee, we focus on embedded critical programs without recursion nor dynamic memory allocation, but extend the analysis to a static set of threads communicating implicitly through a shared memory and explicitly using a finite set of mutual exclusion locks, and scheduled according to a real-time scheduling policy and fixed priorities. Our method is thread-modular. It is based on a slightly modified non-parallel analysis that, when analyzing a thread, applies and enriches an abstract set of thread interferences. An iterator then re-analyzes each thread in turn until interferences stabilize. We prove the soundness of our method with respect to the sequential consistency semantics, but also with respect to a reasonable weakly consistent memory semantics. We also show how to take into account mutual exclusion and thread priorities through a partitioning over an abstraction of the scheduler state. We present preliminary experimental results analyzing an industrial program with our prototype, Th\'es\'ee, and demonstrate the scalability of our approach

    Abstract Interpretation of Supermodular Games

    Full text link
    Supermodular games find significant applications in a variety of models, especially in operations research and economic applications of noncooperative game theory, and feature pure strategy Nash equilibria characterized as fixed points of multivalued functions on complete lattices. Pure strategy Nash equilibria of supermodular games are here approximated by resorting to the theory of abstract interpretation, a well established and known framework used for designing static analyses of programming languages. This is obtained by extending the theory of abstract interpretation in order to handle approximations of multivalued functions and by providing some methods for abstracting supermodular games, in order to obtain approximate Nash equilibria which are shown to be correct within the abstract interpretation framework

    Enforcing Termination of Interprocedural Analysis

    Full text link
    Interprocedural analysis by means of partial tabulation of summary functions may not terminate when the same procedure is analyzed for infinitely many abstract calling contexts or when the abstract domain has infinite strictly ascending chains. As a remedy, we present a novel local solver for general abstract equation systems, be they monotonic or not, and prove that this solver fails to terminate only when infinitely many variables are encountered. We clarify in which sense the computed results are sound. Moreover, we show that interprocedural analysis performed by this novel local solver, is guaranteed to terminate for all non-recursive programs --- irrespective of whether the complete lattice is infinite or has infinite strictly ascending or descending chains

    The PER model of abstract non-interference

    Get PDF
    Abstract. In this paper, we study the relationship between two models of secure information flow: the PER model (which uses equivalence relations) and the abstract non-interference model (which uses upper closure operators). We embed the lattice of equivalence relations into the lattice of closures, re-interpreting abstract non-interference over the lattice of equivalence relations. For narrow abstract non-interference, we show non-interference it is strictly less general. The relational presentation of abstract non-interference leads to a simplified construction of the most concrete harmless attacker. Moreover, the PER model of abstract noninterference allows us to derive unconstrained attacker models, which do not necessarily either observe all public information or ignore all private information. Finally, we show how abstract domain completeness can be used for enforcing the PER model of abstract non-interference

    A Static Analyzer for Large Safety-Critical Software

    Get PDF
    We show that abstract interpretation-based static program analysis can be made efficient and precise enough to formally verify a class of properties for a family of large programs with few or no false alarms. This is achieved by refinement of a general purpose static analyzer and later adaptation to particular programs of the family by the end-user through parametrization. This is applied to the proof of soundness of data manipulation operations at the machine level for periodic synchronous safety critical embedded software. The main novelties are the design principle of static analyzers by refinement and adaptation through parametrization, the symbolic manipulation of expressions to improve the precision of abstract transfer functions, the octagon, ellipsoid, and decision tree abstract domains, all with sound handling of rounding errors in floating point computations, widening strategies (with thresholds, delayed) and the automatic determination of the parameters (parametrized packing)

    Analyzing program analyses

    Get PDF
    We want to prove that a static analysis of a given program is complete, namely, no imprecision arises when asking some query on the program behavior in the concrete (i.e., for its concrete semantics) or in the abstract (i.e., for its abstract interpretation). Completeness proofs are therefore useful to assign confidence to alarms raised by static analyses. We introduce the completeness class of an abstraction as the set of all programs for which the abstraction is complete. Our first result shows that for any nontrivial abstraction, its completeness class is not recursively enumerable. We then introduce a stratified deductive system a2A to prove the completeness of program analyses over an abstract domain A. We prove the soundness of the deductive system. We observe that the only sources of incompleteness are assignments and Boolean tests \u2014 unlikely a common belief in static analysis, joins do not induce incompleteness. The first layer of this proof system is generic, abstraction-agnostic, and it deals with the standard constructs for program composition, that is, sequential composition, branching and guarded iteration. The second layer is instead abstraction-specific: the designer of an abstract domain A provides conditions for completeness in A of assignments and Boolean tests which have to be checked by a suitable static analysis or assumed in the completeness proof as hypotheses. We instantiate the second layer of this proof system first with a generic nonrelational abstraction in order to provide a sound rule for the completeness of assignments. Orthogonally, we instantiate it to the numerical abstract domains of Intervals and Octagons, providing necessary and sufficient conditions for the completeness of their Boolean tests and of assignments for Octagons

    A Logical Product Approach to Zonotope Intersection

    Full text link
    We define and study a new abstract domain which is a fine-grained combination of zonotopes with polyhedric domains such as the interval, octagon, linear templates or polyhedron domain. While abstract transfer functions are still rather inexpensive and accurate even for interpreting non-linear computations, we are able to also interpret tests (i.e. intersections) efficiently. This fixes a known drawback of zonotopic methods, as used for reachability analysis for hybrid sys- tems as well as for invariant generation in abstract interpretation: intersection of zonotopes are not always zonotopes, and there is not even a best zonotopic over-approximation of the intersection. We describe some examples and an im- plementation of our method in the APRON library, and discuss some further in- teresting combinations of zonotopes with non-linear or non-convex domains such as quadratic templates and maxplus polyhedra

    A Scalable Segmented Decision Tree Abstract Domain

    Get PDF
    International audienceThe key to precision and scalability in all formal methods for static program analysis and verification is the handling of disjunctions arising in relational analyses, the flow-sensitive traversal of conditionals and loops, the context-sensitive inter-procedural calls, the interleaving of concurrent threads, etc. Explicit case enumeration immediately yields to combinatorial explosion. The art of scalable static analysis is therefore to abstract disjunctions to minimize cost while preserving weak forms of disjunctions for expressivity. Building upon packed binary decision trees to handle disjunction in tests, loops and procedure/function calls and array segmentation to handle disjunctions in array content analysis, we have introduced segmented decision trees to allow for more expressivity while mastering costs via widenings

    Ogre and Pythia: An Invariance Proof Method for Weak Consistency Models

    Get PDF
    We design an invariance proof method for concurrent programs parameterised by a weak consistency model. The calculational design of the invariance proof method is by abstract interpretation of a truly parallel analytic semantics. This generalises the methods by Lamport and Owicki-Gries for sequential consistency. We use cat as an example of language to write consistency specifications of both concurrent programs and machine architectures
    • …
    corecore